Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat
نویسندگان
چکیده
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots.
منابع مشابه
Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitr...
متن کاملThe Study of temperature depression and its association with grain yield in six wheat cultivars under heat stress conditions and salicylic acid application
In order to evaluate canopy and organs temperature depression (TD) under heat stress conditions and the effects of plant morphology on organs temperature depression and their association with grain yield, two field experiments were conducted using six wheat cultivars (Behrang, Chamran, Kauz, Koohdasht, Karim and Montana) planted on three dates (early, optimum, late) in 2014-2015 and 2015 -2016 ...
متن کاملEvaluation of Crop Water Stress Index, Canopy Temperature and Grain Yield of Five Iranian Wheat Cultivars Under Late Season Drought Stress
Abstract In order to evaluate crop water stress index (CWSI) and canopy temperature of wheat cultivars under terminal drought stress, a field experiment was conducted at the Agricultural Research Station of Shiraz University, Shiraz, during 2009 growing season. Five wheat cultivars including Shiraz, Bahar, Pishtaz, Sistan and Yavaros and four levels of water regime including well watering [Irr...
متن کاملStudy of Grain Yield and Agro-Physiological Characteristics of Some Promising Rainfed Bread Wheat Genotypes under No-Till Condition
In order to evaluate the productivity potential of some bread wheat varieties and promising lines under no-till rainfed condition two different on-farm trials were conducted in cold (Sonqor) and warm (Sarpol-e Zahab) regions of Kermanshah province during 2017-18 cropping season. In the cold condition, 12 winter genotypes and in the warm condition 32 spring genotypes were evaluated for grain ...
متن کاملEvaluation of Agro-Physiological Characteristics and Drought Tolerance in Some of Durum Wheat Breeding Genotypes
In order to study of agronomic, physiological characteristics, drought tolerance and to identify Agro-physiological traits associated with drought tolerance, 19 durum wheat genotypes consisting of 17 advanced breeding lines and two control cultivars (Saji and Zahab) were evaluated in a randomized complete blocks design with three replicated under both stress (rainfed condition) and non-stress ...
متن کامل